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Inclusion of [60]Fullerene in a VPO measurements showed that two homooxacalix[3]are)es (
Homooxacalix[3]arene-Based Dimeric Capsule dimerize in the presence of 3 equiv of 'RERPCHCH,CH;-
Cross-Linked by a Pd'—Pyridine Interaction PPh)-(OTf"), (2) into a molecular capsule).t’
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In 1994, wé and Atwood et af. discovered thatp-tert O™ "OEt 4
butylcalix[8]arene selectively includes [60]fullerene in carbon soot 1
and forms the precipitate with 1:1 stoichiometry. This is a very NPae Ph Ph
novel and very useful purification method to obtain [60]fullerene ™ 2+ et L=""P">"p
in large quantity and with high purify.* More recently, it was [Ph‘p p:Ph| 2¢cFys0,; 00 Q ©007O Ph Ph

shown that certain calirjarenes and their analogues can interact
with [60]fullerene even in solutiofr.'® The X-ray structure of a 2 3 6CF3S0;5
[60]fullerenecalix[5]arene complex showed that [60]fullerene is
included in a cavity composed of two calix[5]arene half-bofvls.
This picture stimulated us to design such a dimeric capsule mole-

cule composed of two calir[arenes for inclusion of [60]fuller- guest molecules tested herein were DMF, DMSO, nitromethane,

enel* Here, it occurred to us that the utilization of a coordination d i 12 4 5-tet thvib th d
bond for this purpose has been a hitherto missed opportunity, for@damantane, 1,2,4,o-letrametnyibénzene, anihracene, pyrene, sod-

Fujita et al'® and Stang et &F have shown a number of examples ium picrate, and others. However: none of these cpmpounds could
where the coordination bond is very useful for the construction 9'V€ the separate NMR peaks or induce the chemical shift change

of self-assembling supramolecular structures. We thus designed"’ltt”bUtable to the hogjuest complex formation. Examination of

compound3; the 'H NMR and mass spectroscopic studies and the CPK molecular models reyeals that three window8 are
large enough to allow permeation of these guest molecules. Only

As shown in Figure 1A, a 2:3/2 mixture gave aH NMR
spectrum assignable Bwith a Da,-symmetrical structuré. The
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Figure 1. Partial'H NMR spectra of (A) 1]:[2] = 2:3 (1.0 mmol dm3:1.5
mmol dnt3) and (B) B] (0.50 mmol dnt3) in the presence of [60]fullerene (5.3
mmol dnt3): 600 MHz, CLCDCDCb, 60 °C.
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Figure 2. Partial’3C NMR spectrum of3C-enriched [60]fullerene (0.5 mmol
dm=3) in the presence d (0.5 mmol dn13): 150 MHz, CLCDCDCL, 25 °C.

" 160 " 140

The'H NMR spectrum of3 in the presence of [60]fullerene is
shown in Figure 1B8In Figure 1B, the proton signals for fr&
and those for th&-[60]fullerene complex appeared separately,
and these signals were not coalesced even €94t 60 °C the
assignment (Figure 3) was successfully attained usingHhe
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Figure 3. Assignment of the3:[60]fullerene complex. The numbers indicate
the chemical shiftsAdy): 600 MHz, CLCDCDCL, 60 °C, [3] = 0.50 mmol
dm=3, [[60]fullerene] = 5.3 mmol dnT3. The numbers in parentheses denote
the shift from uncomplexed (+ to lower magnetic field;- to higher magnetic
field). @The chemical shift of the ArH protons of calixarene overlaps with those
of other aromatic protons.
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indicate that to interact with [60]fullerene, the phenyl groups in
3 must be also flattened to create a cavity shape suitable for inclu-
sion of [60]fullerene (Scheme 1). The simple signals observed
for the 3-[60]fullerene complex imply that, even after including
[60]fullerene, 3 maintains aDs,-symmetrical structure. The-

and g-pyridyl proton signals for the3-[60]fullerene complex
appeared separately, indicating that the rotation of the pyridine
moieties becomes slower than tHd NMR time scalé* The
change in the rotational speed is ascribed to “steric hindrance”
of included [60]fullerene. The large downfield shift observed for
onea- and oneB-pyridyl proton (+0.13 ppm and+0.78 ppm,
respectively) suggests that these protons are affected by the
m-electron ring current of the included [60]fullerene. The as-
sociation constani(,s9 could be readly estimated from the ratio
of the peak intensity of fre8 and the3-[60]fullerene complex

to be 54 dr mol ™. ]
In conclusion, the present paper demonstrates the first example

for the inclusion of [60]fullerene in a capsule-like cage molecule.
The cage molecule can disrupt [60]fullerersolvent, [60]fuller-

ene-[60]fullerene interactions, so that (i) one may estimate “uni-
molecular” chemical and physical properties of [60]fullerene in
polar solvents, (i) one may inhibit undesired photodimerization

'H COSY spectrum. It is known that the angle of the phenyl units of [60]fullerene, or (iii) only the specific substrate which can pass
with respect to the calixarene ring plane can be estimated by thethrough the window of the cage molecule may react with [60]-

chemical shift differenceXdy) between axial and equatorial pro-
tons in the ArCHO methylene group®?3In the absence of [60]-
fullerene theAdy of 3 was 0.56 ppm. This value is close to that
of 4 (0.48 ppm, 30C, tolueneds:CD;OD = 44:1 v/v). In contrast,
the Ady of the 3-[60]fullerene complex was increased to 0.72
ppm, which is similar to that of thd-Li™ complex (0.68 ppm,
30°C, tolueneds:CD;OD = 44:1 v/v) which has flattened phenyl
groups to include [60]fullerene in the cavftyThese results
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fullerene.
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